Principles of Macroeconomics: Investment and Savings
Class 7

Alex Houtz September 8, 2025

University of Notre Dame

Overview

- ► Announcements:
 - LC 10, GH 10 due Friday at 11:59pm
- ► Topics:
 - Investment
 - Savings
 - The market for savings and investment
- ► Readings:
 - Chapter 10.1, chapters 10.2-10.3

Capital

► The last two weeks, we used the following production function:

$$Y = AK^{\alpha}L^{1-\alpha}$$

where $K \equiv \text{capital}$.

- lacktriangle How was capital supplied? We assumed the supply was fixed at ar K
- ► Now, we will relax this assumption

Where Does Capital Come From

- ▶ Recall that capital is the stock of productive assets:
 - Factories, robots, trucks, highways, etc.
- ► We only get capital through investment
 - The purchase of goods and services by businesses and households that add to the capital stock
- ▶ Important: this is "real" investment we are not referring to financial transactions

Capital Accumulation

- ► So we gain capital by investing but capital also wears out
- ► How can we model this?

$$K_{t+1} = K_t - \delta K_t + I_t$$

where $K_{t+1} \equiv$ capital tomorrow, $K_t \equiv$ capital today, $\delta \equiv$ the "depreciation rate", and $I_t \equiv$ investment

lacktriangle When does the capital stock increase? When $I_t > \delta \mathcal{K}_t$

Well, OK, Where Does Investment Come From?

- ► Investment comes from savings
- ► Define savings as follows:
 - National Saving is private saving + government saving
 - In the real world, capital markets go across borders. So if we invest more than we save, then we borrow from the rest of the world.

The Return of GDP

► Remember GDP?

$$Y = C + I + G + (x - im)$$

► Rearrange:

$$Y - C - G = I + (x - im)$$

- ► Here, the left-hand side represents what is left from GDP after total consumption (by either households or the government). By definition, these are national savings, S!
- ► So savings is equal to investment plus the trade balance:

$$S = I + (x - im)$$

A Closed Economy

- ► Suppose the economy is closed
 - This just means that there is no international trade
- ▶ Then x, im = 0 and S = I
- ► A country then can only invest as much as it saves

An Open Economy

- ► Now suppose the economy is open
 - Now we allow trade
- ► There are two cases:
 - (1) Exports equals imports then x im = 0 and S = I again
 - (2) Exports don't equal imports then $x im \neq 0$ and $S \neq I$
- ▶ In case (2), the trade balance matters for analysis

Capital Flows

- ▶ But how does that make sense?
- ightharpoonup x > im implies that a country is shipping goods out of the country more than into it
 - Then foreign buyers are selling us their assets so financial capital flows out
 - This is like us saving in foreign assets
- ightharpoonup x < im implies that a country is shipping goods into the country more than out of it
 - Then foreign buyers are purchasing our assets financial capital flows in
 - This is like us borrowing from foreign lenders
- ► Call the flow of assets the net capital inflow (NCI). Then based on the above:

$$NCI = im - x = -(trade balance)$$

► So another way to view investment:

$$I = S + NCI$$

Going Further into Savings

ightharpoonup We can split national savings, S, into two parts: private and government

$$S = S_{private} + S_{gov}$$

▶ Let's look at what's called the government budget constraint:

$$G + TR + S_{gov} = T$$

- ▶ where $G \equiv$ government spending, $TR \equiv$ transfer payments (like social security), and $T \equiv$ tax revenue
 - $S_{gov} > 0 \longrightarrow \text{budget surplus}$
 - ullet $S_{gov} < 0 \longrightarrow {\sf budget deficit}$

► Households have their budget constraint:

$$Y + TR = T + S_{private} + C$$

► Then from the definition of National Savings:

$$S = Y - C - G$$

$$= Y - C - G + TR - TR + T - T$$

$$= \underbrace{Y + TR - T - C}_{S_{private}} + \underbrace{T - G - TR}_{S_{gov}}$$

Breaking this Down for the United States

US Savings vs. Investment Over Time

China Savings vs. Investment Over Time

The Market for Loanable Funds

- ► Financial markets match savers and investors
- ▶ Demand for Loanable Funds:
 - "Demand for investment"
 - Depends on the interest rate
 - Interest rates are like a "price of investment"
- ► Supply of Loanable Funds:
 - "Supply of savings"
 - Depends on the interest rate
 - Interest rates represent the return to saving

Investment Demand

- ▶ Investment depends negatively on the interest rate: $\frac{\partial I}{\partial r} < 0$
 - Basically, as the interest rate increases, the amount of investment demanded falls
- (1) Borrowing
 - If a firm borrows to create investment, loan repayment depends on the interest rate r
 - High r makes it less likely a firm will want to borrow
- (2) Discounting of the future
 - We could invest money today and get a future return in a project
 - But, there's a time value of money \$1 today is worth more than \$1 tomorrow
 - To calculate how valuable that investment is, we calculate the present discounted value (PDV)
 - PDV is lower when the outside interest rate, r, is high
- (3) Opportunity Cost
 - Related to (2), funds used for investment could be used in another way stock market, bonds, etc.
 - High r increases opportunity cost of investment

Savings Supply

$$S = S_{private} + S_{gov}$$

- ▶ Private savings decisions reflect a trade-off between consumption today and saving
 - We like consumption today
 - We want a return for giving up consumption today a return on our savings
 - The interest rate is that return
 - We would give up \$1 of consumption today to get $1 \times (1+r)$ of consumption tomorrow
- ► Government savings decisions we usually take as exogenous that is, determined by factors outside the model

Market for Loanable Funds

$$\underbrace{S_{private}(r) + NCI}_{\text{Supply}} = \underbrace{I(r) - S_{gov}}_{\text{Demand}}$$

- ▶ Supply consists of private savings, $S_{private}(r)$, and foreign capital inflows (NCI)
- ▶ Demand consists of investment I(r) and government savings (S_{gov})
 - \bullet S_{gov} is subtracted because if the government demands savings, it is *borrowing*, and its savings is thus negative
- ► For the reasons on the previous slides supply slopes up, demand slopes down
- ► As usual, we set supply equal to demand to solve for equilibrium

Practice Problem – Accounting

Country A has:

$$Y = 2000$$
, $C = 1350$, $G = 300$, $x = 250$, $im = 200$.

1. Compute:

- (a) National saving S
- (b) Trade balance $TB \equiv x im$
- (c) Investment I
- (d) Net capital inflow NCI, and state whether capital flows in or out
- 2. Suppose next year domestic investment rises by 30, while Y, C, G are unchanged. What must happen to the trade balance and to NCI?
- 3. Now suppose the government raises spending by 40 and finances this via borrowing, with Y and C unchanged. Recompute S, TB, and NCI. Interpret the direction of capital flows

Solutions

1.

$$S = Y - C - G = 2000 - 1350 - 300 = 350,$$

$$TB = x - im = 250 - 200 = 50,$$

$$I = S - TB = 350 - 50 = 300,$$

$$NCI = im - x = 200 - 250 = -50 \quad \text{(negative} \Rightarrow \text{net capital outflow)}.$$

2.

$$I = 330,$$
 $S = 350$
 $TB = S - I = 350 - 330 = 20,$
 $NCI = -TB = -20.$

3.

$$G = 340,$$
 $S = Y - C - G = 2000 - 1350 - 340 = 310,$ $TB = S - I = 310 - 300 = 10,$ $NCI = -10$

Practice Problem - Present Discounted Value

Assume a constant real interest rate r > 0 and deterministic cash flows $\{c_t\}_{t=1}^T$. Then:

$$PDV = \sum_{t=1}^{I} \frac{c_t}{(1+r)^t}$$

Suppose that $c_t = c_{t+1} \ \forall \ t$. Then:

$$PDV = \frac{c}{r}$$

- 1. A firm can buy a machine today for cost K. Starting next year it generates a constant real net cash flow c each year forever. The real interest rate is r > 0.
 - (a) Compute the project's PDV and NPV (PDV cost)
 - (b) Derive the break-even condition in (c, r, K)
 - (c) Numerical check: if K = 900, r = 0.05, and c = 50, should the firm invest in the machine?

Solutions

(a) Because the cash flow and interest rate are constant, we can use the simplified PDV formula. As such, the NPV is:

$$NPV = \frac{c}{r} - K$$

(b) We want the minimum amount the project needs to return for the machine to be worth investing in. As such, we set the NPV to zero and solve for c:

$$\frac{c}{r} - K = 0$$
$$rK = c$$

(c) Plug-in the numbers:

$$NPV = \frac{50}{0.05} - 900$$
$$= 100$$

The firm should invest in the machine

Practice Problem – PDV and Opportunity Cost

You can either (i) invest K in a project that pays constant c forever starting next year, or (ii) place the same K in a risk-free asset that earns r per year forever.

- 1. Find the minimum c^* (as a function of K and r) that makes you indifferent between the project and the asset.
- 2. If r increases by $\Delta > 0$, what happens to c^* ? Explain the intuition in one sentence.
- 3. Numerical check: with K=1000 and r=0.05, compute c^* . Recompute c^* if r rises to 0.06.

Solutions

1. Option (1) gives us an NPV of $\frac{rK}{r} - K = 0$. Option (2) gives us an NPV of $\frac{c}{r} - K$. So set $NPV_1 = NPV_2$ and solve for c:

$$c^* = rK$$

- 2. c^* necessarily rises with r, since r multiplies K
- 3. Plug in the numbers:

$$c^* = 0.05(1000) = 50$$

In the second scenario:

$$c^* = 0.06(1000) = 60$$

Summary

- ► National savings equals investment plus the trade balance
- lacktriangle Net capital inflows equals -1 imes the trade balance and denotes where assets flow
- ightharpoonup Demand for investment is downward sloping in r
- ► Supply of savings is upward sloping in *r*
- ► The loanable funds market matches savings to investors
- ► Remember: homework due Friday night
- ► Read sections 10.2 10.3